
  
Abstract—Hand gesture recognition (HGR) in real-time and 

with precision has become an important research topic. In this 
article, a loose hand gesture recognition (LHGR) system based 
on relational features using a depth sensor is implemented, 
which not only maintains an impressive accuracy in real-time 
processing but also enables the user to use loose gestures. HGR 
can usually be divided into three stages: hand detection, hand 
feature extraction, and gesture classification. However, the 
method we propose has been useful in improving all the stages 
of HGR. In the hand detection stage, we propose a ROI dynamic 
estimation method and a wrist-cutting method that conform to 
the characteristics of a human hand. In the feature extraction 
stage, we use the more reliable relational features which are 
constructed by local features, global features, and depth coding. 
In the gesture classification stage, we use three layers of 
classifiers including finger counting, finger name matching, and 
coding comparison; these layers are used to classify 16 kinds of 
hand gestures. In the end, the final output is adjusted by an 
adaptive decision. The average processing speed per frame is 
38.6 ms. Using our method has resulted in an average accuracy 
of standard gestures of about 98.29%, and an average accuracy 
of loose gestures of about 88.32%. In summary, our LHGR 
system can robustly classify hand gestures and still achieve 
acceptable results for loose gestures. 
 

Index Terms—Computer vision, hand gesture recognition, 
human-computer interaction, image processing, kinect. 
 

I. INTRODUCTION 
Human-computer interaction (HCI) has become one of the 

most popular research topics. Owing to the intuitive mode of 
operation and a high degree of freedom, hand gesture 
recognition (HGR) has always been a very popular focus area 
in HCI.  

Based on different sensors, HGR systems can be 
categorized as vision-based [1]-[3] and glove-based [4], [5]. 
Vision-based HGR that uses optical sensors to capture 2D 
images is very sensitive to light; so, some studies have added 
various restrictions for a better hand segmentation. In 
contrast, glove-based HGR systems capture much more 
robust information from human hands. Nonetheless, users 
have to wear additional devices that cause inconvenience, 
involve extra costs, and give rise to inhibitions when 
gesturing. Fortunately, the lower-priced depth sensors 
provide a new opportunity for HGR. The common methods 
of depth sensing include stereo triangulation [6], structured 
light [7], and time-of-flight (ToF) [8]. Some research 

Manuscript received February 27, 2018; revised April 25, 2018. 
Chen-Ming Chang and Din-Chang Tseng are with the Institute of 

Computer Science and Information Engineering, National Central University, 
Jhongli, Taiwan 32001 (e-mail: 985402003@cc.ncu.edu.tw, 
tsengdc@ip.csie.ncu.edu.tw). 

outcomes [9], [10] indicate that these methods have no 
absolute winner; so, a device that would be widely accepted 
should promote user interaction. For example, Microsoft has 
released the Kinect Software Development Kit (SDK) for 
programmers based on which Kinect has been used in many 
applications [11].  

The past HGR studies can be divided into two types: one 
deals with the simplification of the complexity of hand 
gestures for real-time processing [3], [12]; in the other, the 
amount of calculations overhead required to attain precise 
gestures is not a significant factor [13], [14]. In addition, the 
improvements in HGR have attached importance to user 
experience. Consequently, loose hand gestures have to be as 
friendly to users as possible. Loose hand gestures allow the 
rotations in roll, yaw, and pitch; moreover, the fingers can 
have different degrees of bending, as shown in Fig. 1. 

 

 
Fig. 1. A diagram of loose hand gestures. 

 

In this article, a loose hand gesture recognition (LHGR) 
system based on relational features using a depth sensor is 
implemented via three stages, as shown in Fig. 2; we have 
realized improvements in all stages. In the hand detection 
stage, we can define an appropriate region of interest (ROI) 
size which completely covers the hand region depending on 
the depth of the hand skeleton point based on the human 
skeleton provided by Kinect SDK. Next, a wrist-cutting 
method that conforms to the characteristics of the human 
hand is proposed to remove the arm region. In the feature 
extraction stage, the required relational features are 
composed of three kinds of features, extracted in three steps. 
The first step is to use two signatures, namely the distance 
signature and the angle signature to find local features on a 
hand contour. The second step is implemented based on three 
rules of hand geometry and a double projection method to 
generate global features that describe the characteristics of a 
complete gesture. In the third step, we propose a simple 
method, called depth coding, to record the distribution of 
folded fingers within the palm region. The final stage is 
gesture classification by which we classify 16 kinds of 
gestures using three layers of classifiers which include finger 
counting, finger name matching, and coding comparison. 
Then the output can be adjusted more precisely through an 
adaptive decision in continuous time. 
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In our study, we used an Intel Core i3-3220 as the CPU, 
NVIDIA GeForce GTX 650 Ti as the VGA, and a Kinect for 
Windows as the sensor. The average processing speed per 
frame was 38.6 ms; the average accuracy of standard gestures 
was about 98.29%, and the average accuracy of loose 
gestures was about 88.32%. The results show that the LHGR 
system we propose can be implemented on generic hardware 
devices and a reliable recognition of loose hand gestures can 
be achieved. 
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Fig. 2. The framework of our LHGR system. 
 

II. RELATED WORKS 
Generally, HGR can be divided into three stages: hand 

detection, feature extraction, and gesture classification. In 
this chapter, we will introduce a review of these stages. 

A. Hand Detection 
Hand detection is the first work in HGR. In this stage, the 

hand regions are estimated from images. In the past, 
appearance-based methods [15] were used to detect the hands, 
but were found to be unreliable. Wang [16] proposes a novel, 
real-time hand detection algorithm based on skin color. The 
detecting procedure is simple and fast. Nowadays, depth 
information acquired using depth sensors makes hand 
detection more easy and effective. One easy approach is to 
define a valid range through a depth threshold [17], [18] to 
detect objects. Some studies [19] use the body skeleton 
provided by Microsoft Kinect to assist hand detection. 
Ohn-Bar and Trivedi [20] developed a vision-based system 
that employs a combined RGB and depth descriptor to detect 
and classify hand gestures. 

B. Feature Extraction 
Feature extraction is used to obtain useful and sufficient 

features to describe a hand gesture; the three common 
methods to achieve this [11] are shape-based, 3D 
model-based, and skeleton-based. An alternative approach is 
to use the relationships among objects to define relational 
features [21]. 

Shaped-based. This approach uses hand contours which 
are easy to obtain with less computation; but the collected 
data is susceptible to noises. Ren et al. [22] propose the 
finger-earth mover's distance (FEMD) approach to measure 
the differences between hand shapes. Wong et al. [23] 
present a new superpixel-based HGR system based on a 
novel superpixel earth mover’s distance (SP-EMD) metric, 
together with a Kinect depth camera. 

3D model-based. This approach is an improvement from 
the traditional model-based method; it offers a breakthrough 
in the estimation of precision gestures. Oikonomidis et al. 
[15], [24], [25] propose a series of 3D model-based studies. A 
3D hand model is represented as a vector of 27 parameters to 
encode the 26 degrees of freedom of a human hand. Particle 
Swarm Optimization (PSO) [26] is an efficient optimization 
algorithm used to minimize the difference between the 
hypothetical and observed gesture. Because the calculation of 

27 parameters is computationally intensive, their studies also 
exploit GPU processing to speed up the PSO. 

Skeleton-based. Here, the gesture based on the 
configuration of the hand skeleton is deduced. Skeleton 
generation is the key to skeleton-based methods. Keskin et al. 
[27] propose a real-time skeleton fitting algorithm based on 
random decision forests, which is used to perform per pixel 
classification and assign each pixel to a hand part. Fan et al. 
[28] present an algorithm for estimating a 3D hand skeleton 
model from a depth map based on the Active Shape Model 
framework. 

Relational features. Using this approach, the original 
features are augmented with knowledge or guidelines such 
that the performance meets expectations. Relational features 
can be described in the form of graphs or rules using a 
specific syntax or language, which provide common 
relational information including adjacencies, geometrical 
relationships, behavior patterns, hierarchical structures, etc. 
Tian et al. [29] propose a set of comprehensive features, 
termed joints kinetic and relational features, for action 
recognition. Zweng et al. [30] evaluate a new algorithm for 
pedestrian detection using a relational feature model in 
combination with histogram similarity functions. 

C. Gesture Classification 
Gesture classification is used to classify the hand as a 

specifically defined gesture (static or dynamic) based on the 
features of the hand. Li [31] organizes three classifiers in a 
hierarchical manner which include the number of fingers, the 
finger names, the angles between each pair of fingers, to 
deduce the hand pose. Giulio et al. [32] introduce novel 
acquisition devices like Leap Motion and Kinect that can 
obtain a very informative description of the hand pose for 
accurate gesture recognition. This information is processed 
and fed into a multiclass SVM classifier to recognize gestures. 
Another new approach is Convolutional Neural Networks 
(CNNs)—a type of feed-forward artificial neural network. In 
recent years, CNNs have been used widely in computer vision 
[33]. So, some researchers have applied CNNs to hand 
gesture classification [34], [35] with good outcomes. 
 

III. THE PROPOSED METHOD 

A. Hand Detection 
We propose a ROI dynamic estimation method to find the 

most suitable ROI at different depths. First, the hand skeleton 
point provided by the Kinect skeleton is defined as the center 
point of ROI, and the largest size gesture is designated as the 
“maximally open hand”. We record the length (in pixels) of 
the ROI needed for a “maximally open hand” at different 
depths; then the estimation formula 

l = 0.00006d 2 – 0.279d + 360                      (1) 

is applied based on the least squares estimation principle. In 
(1), d is the depth value (in millimeters) of the hand skeleton 
point and l is the length (in pixels) of the ROI.  

In the general HGR, wrist cutting is not taken seriously. 
However, the quality of wrist cutting influences the result 
considerably. So, we present a stable wrist-cutting method 
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based on the length difference between the adjacent lines and 
the distribution of the probability histogram. An example of 
our wrist-cutting method is shown in Fig. 3. In Fig. 3(a), the 
red point o is a centroid of the whole gesture, the green point 
c is on the image boundary that belongs to the gesture, 'G  
means all the gray lines which are orthogonal to oc , and S is 
a set of the center points of 'G shown in brown. In Fig. 3(b), L 
is the principal axis of the arm shown in purple, which is 
fitted by the least square estimation of S. 'W  is a set of 
candidates for the wrist-cutting line, which are orthogonal to 
L, shown in green. In Fig. 3(c), "W  is represented after 
removing the head and tail of 'W  to retain the middle half. 
Finally, the wrist-cutting line Wc shown in red can be selected 
from "W  by the following formula. 

 

Wc = arg( max{ (|D1－Di-1| + |Di－Di+1|) × Hi } )         (2) 
 

In (2), "Wi ∈ , Di means the length of i presented by 
Euclidean distance, and Hi is the probability value of i in a 
histogram. If (2) is maximum when ti = , that t is the Wc. In 
addition, the left wrist point wl, right wrist point wr, and 
center wrist point w can be found on Wc. These three wrist 
points will play an important role in subsequent processing. 
 

 
(a)                              (b)                               (c) 

Fig. 3. The diagram of wrist cutting process. 
 

B. Feature Extraction 
Feature extraction is completed in three steps to find local 

features, global features, and depth coding. The 
above-mentioned features are used to compose the relational 
features of hand gestures. 

Local features include the peaks, valleys, and the known 
wrist points. Local features have the ability to describe the 
locations of the fingertips and gaps between fingers, which 
can be used to identify the number of protruding fingers in 
hand gestures. In this study, the process can be considered as 
a local optimum of an optimization problem. 

First, we use the Douglas-Peucker algorithm (DP) to 
simplify the gesture contour, as shown in Fig. 4(a). Scanning 
the contour clockwise from wl to wr, the set of sequence 
vertices is recorded as V = { v1, v2, … , vn }, where v1 = wl 
and vn = wr. Then, we make two signatures, namely the 
distance and the angle signature to assist local feature 
extraction. The distance signature is recorded as Ds = 
{ d(v1,w), d(v2,w), … , d(vn,w) }, which represents the 
distance between each vertex and w; the angle signature is 
recorded as As = { A(∠ w,v1,v2), A(∠ v1,v2,v3), … , A(∠

vn-2,vn-1,vn), A(∠ vn-1,vn,w) }, which represents the values 
calculated by the following formula. 

A(angle) = Sign( sin(angle) ) × cos(angle)              (3) 

In (3), the angle is that which is between each vertex and 
its two adjacent vertices, Sign(sin(angle)) is the direction of 

the cross product, and the value of cos(angle) can be used to 
determine the sharpness of the angle. An example for 
distance signature is shown in Fig. 4(b); the horizontal axis 
displays the sequence vertices, and the vertical axis displays 
their Ds. As regards the angle signature shown in Fig. 4(c), 
the horizontal axis displays the sequence vertices, and the 
vertical axis displays their As. 

Next, we will explain how to extract the local features. 
First, As can be divided into many regions with each of the 
two vertices having the same direction of the cross product. 
Then, the local sharpest vertex in each region, the vertex with 
the maximum A(angle), called a peak is picked; otherwise the 
vertex with the minimum A(angle) is identified as a valley. 
Next, we use hill climbing to update the positions of peaks 
and valleys on Ds. Hence, the last peaks and valleys are the 
local optimal solutions. 
 
 
 
 

(b) 
 
 
 

  (a)                                             (c) 
Fig. 4. An example of the gesture contour and signatures: (a) A simplified 

gesture contour via DP. Scanning the contour clockwise from wl to wr; (b) A 
distance signature; (c) An angle signature. 

 

Global features can be used to describe the overall gesture 
characteristics which include the palm region, the finger 
region, and the Metacarpophalangeal (MCP) joints. The most 
important of global features is MCP which is located at the 
junctions of the metacarpals and phalanges [36]. 

Global features are extracted by two processing works. 
The first work is to divide the gesture into the palm region 
and the finger region, according to three rules designed by the 
hand geometry which are: 
1) Generating the corresponding valleys. Each peak and its 

two adjacent valleys can create a triangular block. But 
sometimes the peak nearby a wrist point may have only 
one adjacent valley; thus we need to generate a new 
valley with the same distances from the peak to the two 
adjacent valleys. 

2) Determining the finger region. The angle between each 
peak and its adjacent valleys is examined. If the angle is 
less than 60, this triangle block belongs to the finger 
region. 

3) Correcting finger region based on trigonometry. Ideally, 
the shape of each triangle block that belongs to the finger 
region should approximate an isosceles triangle. Here, 
we may generate a new valley on the longer side if 
needed, and the new tri-angle block forms an isosceles 
triangle. 

Based on these three rules, we now have the local features 
and the newly generated valleys. Defining peaks as a set of 
fingertips P={ p1, p2, … , pi }, the remaining feature points 
are defined as Q={ q1, q2, … , qj }. The palm region is formed 
by Q. 

In the second work, we project P onto a palm circle with a 
double projection method to calculate the locations of MCP. 
The center of the palm circle is the centroid of Q, called qc; 
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the radius is equal to (2∑d(q1,qc)/3j). The first projection 
consists of projecting P onto their opposite sides according to 
the ratio of the hypotenuse side and the adjacent side, named 

′p . The second projection consists of projecting ′p  onto the 
palm circle, and the final projection points are the MCP joints. 
An example for estimating global features is shown in Fig. 5. 
In Fig. 5(a), the local feature points are displayed; the wrist 
points are represented in gray, the peaks in yellow, and the 
valleys in cyan. In Fig. 5(b), the new corresponding valleys 
are represented in green; the range within the red border is the 
palm region, and the range outside the red border is the finger 
region. In Fig. 5(c), the palm circle is represented in green; P 
is projected onto ′p  with the ratio b/a = d/c, and the MCP 
joints are represented in blue. 

 

 
               (a)                                 (b)                          (c) 

Fig. 5. An example for estimating global features: (a) Local features of hand 
gesture; (b) A division of a gesture into palm region and finger region; (c) 

The result of MCP joints. 
 

Depth coding is proposed to record the distribution of 
folded fingers. First, we calculate an average depth value de 
of the palm region, and the points are a part of folded fingers 

when their depth is less than de. Next, the connections 
between two adjacent MCP joints are denoted right to left as 
M = { m1, m2, … , mn }, where 0 ≤ n ≤ 4. The proportion of the 
number of pixels belong to folded fingers on mn is calculated 
as raten. Finally, we code M sequentially through a 
customized threshold T (T = 0.55 in this study). If raten > T, 
we code mn to 1; otherwise, we code it to 0. An example of 
depth coding is shown as Fig. 6, in which the pixels of folded 
fingers are represented in gray, and M are represented in 
yellow. The codes are respectively 000 in Fig. 6(a) and 001 in 
Fig. 6(b). 
 

 
(a)                            (b) 

Fig. 6. Using depth coding to classify two gestures; (a) is coded as 000; (b) is 
coded as 001. 

 

C. Gesture Classification 
We propose three layers of classifiers to classify 16 kinds 

of gestures, which are “Num. 0,” “Num. 1,” “Num. 2,” “Num. 
3,” “Num. 4,” “Num. 5,” “Num. 6,” “Num. 7,” “Num. 8,” 
“Num. 9,” “Let’s Go,” “Little,” “Rock,” “I Love You,” 
“OK,” and “No Ring”, is shown as Fig. 7. 
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Fig. 7. Classification of 16 gestures using three layers of classifiers. 

 
TABLE I: THE AVERAGE ANGLE OF INDIVIDUAL FINGERS IN DIFFERENT 

CATEGORIES 

 
 

The three layers of classifiers are as below: 
Finger counting. The number of protruding fingers of 

local features can be used to classify 16 kinds of gestures into 
6 categories. 

Finger name matching. Calculating the included angle 
between each MCP, w, and wl from global features. Next, 

counting the average angle of each finger in different 
categories; the results are shown in Table I. Although we can 
match the protruding fingers using Table I to classify 
gestures, an ideal result for loose gestures is evasive. 
Eventually, we only determine whether the thumb exists 
using the relatively stable thumb angle. The categories can be 
further divided into two statuses—with thumb and without 
thumb. Notably, because there is no depth coding 
information for only one protruding finger, the classification 
is completed by matching only one finger name. 

Coding comparison. For the last layer of classifiers, all 
cases of depth coding corresponding to the two statuses of 
gestures are shown in Table II(A). This form can be 
simplified into Table II(B); thus, we can just compare the last 
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number of depth coding to complete the classification. 
TABLE II: DEPTH CODING CORRESPONDING TO THE GESTURES: (A) ALL 
CASES OF DEPTH CODING CORRESPONDING TO THE TWO STATUSES OF 

GESTURES; (B) A SIMPLIFIED FORM FROM (A) 
(A)                                                                   (B) 

 
 
 
 
 

 
In the last work of our LHGR, we use an adaptive decision 

to record each finger state corresponding to gestures in the 
last five frames; a finger is considered reliable when it has a 
sufficiently big accumulated value. The final output will be 
determined by these reliable fingers; hence, the adaptive 
decision can effectively reduce the impact of misjudgments. 
 

IV. RESULTS 

A. Standard Gesture Recognition Results 
 

TABLE III: THE STANDARD GESTURE RECOGNITION RESULTS OF THREE 
METHODS RESPECTIVELY 

 
 

The standard gesture is defined as a normal hand with 
straight fingers and without intense rotation. In addition to 
our method (i), we designed two methods for verification; 
method (ii) with two layers of classifiers that does not use 
depth coding; and method (iii) with two layers of classifiers 
that does not use depth coding but uses peaks instead of MCP 
joints. The standard gesture recognition results of the above 
three methods are presented in Table III; the accuracy rate of 
standard gestures is about 98.29% when using our method (i), 
92.28% using method (ii), and 87.29% when using method 
(iii). The experimental results have proved that MCP joints 
and depth coding are useful features. 

B. Loose Gesture Recognition Results 
The loose gesture recognition results from our method are 

presented in Table IV. The accuracy rate of loose gestures is 
about 88.32%, and the worst gesture is “OK” at an accuracy 
rate of about 77.17%. Roughly, although the accuracy of 
loose gestures is much lower compared to that of standard 
gestures, we have achieved acceptable results for loose 
gestures. 

There are six examples for loose gesture recognition, as 
shown in Fig. 8. From a comparison of Fig. 8(a) and Fig. 8(b), 
while both the actual gestures are “Num. 5,” we can see that 
Fig. 8(b) is mistaken for “Num. 4” because of its incomplete 
shape. From a comparison of Fig. 8(c) and Fig. 8(d), while 
both the actual gestures are “Let’s Go,” we can see that the 
Fig. 8(d) is mistaken for “Num. 1” because of the violent 
gesture rotation. Comparing Fig. 8(e) and Fig. 8(f), while 
both the actual gestures are “Num. 2,” it can be seen that Fig. 
8(f) is mistaken for “Rock” due to the distribution of folded 
fingers (or say, the rotation in yaw is the major reason). 
Therefore, the yaw rotation is the most harmful to the system 
because it may simultaneously affect the gestural shape and 
distribution of folded fingers. 
 
TABLE IV: THE LOOSE GESTURE RECOGNITION RESULTS ON OUR METHOD 

 
 

  
(a)                                             (b) 

  
(c)                                             (d) 

  
(e)                                             (f) 

Fig. 8. Six examples for loose gesture recognition, the left side of which 
shows a color image, and right side shows the relational features and the 

recognition result. 
 

V. CONCLUSION 
We implemented a LHGR system based on relational 

features using a Kinect, whereby improvements in all the 
stages have been realized to maintain a good accuracy in 
real-time processing. The computer that we used for LHGR 
comprises commonly available parts in our study. The 
average processing speed of each frame was 38.6 ms, the 
average accuracy of standard gestures was about 98.29%, 
and the average accuracy of loose gestures was about 
88.32%.  

Some directions for future work are to increase the 
varieties of recognized gestures to improve the accuracy of 
recognition and to reduce the environmental constraints. Our 
study is very close to actual life conditions and presents a 
great potential for development. In future, the findings from 
our study can be easily applied to user interaction in a variety 
of control applications. 
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