

Abstract—With a large number of concurrent users, many

large-scale software systems will face a heavy computational
load. In this case, a stress test to verify the performance of
large-scale software systems becomes especially important. This
paper builds up software system stress generation model,
designs and implements a new stress generation and control
system, which simulates high concurrent stress requests. It
provides control of the stress generation model, scheduling of
test scripts, and statistical functions of test information. The
results show that the stress generation and control system
support the testing of the database and large-scale software
system. The simulation has a large amount of concurrency, fast
execution speed and low resource consumption.

Index Terms—Stress test model, control system, large-scale
software systems.

I. INTRODUCTION
Stress testing is the guarantee of the basic quality of

large-scale software systems [1]. The basic idea of stress
testing is to let the system under test run for a long time or a
large load by initiating a large number of simulated user
request operations [2]. And then analyze the performance of
the system by analyzing the use of the system resources and
the response time of the message The stress generation and
control system continuously applies stress to the system until
it reaches the unacceptable performance point of the system,
thereby judging the system bottleneck and determining the
maximum service level that the system can provide. In other
words, the stress test uses a concurrent method to increase the
system load until it fails and obtain a series of indicators of
the system. thereby obtaining the maximum processing
capacity of the system. TPS (Transaction Per Second) refers
to the number of things or transactions that a system can
process per second. It is a very important indicator to
measure the processing power of a system [3], [4].

The request stress that the large-scale software system
bears in the actual scenario changes with time. Therefore, in
order to simulate the user's actual application behavior habits,
it is necessary to establish a stress generation model
according to the change law of the actual stress of the
large-scale software system [5]. Per the generation model, the
stress request value initiated to the system is changed, and the
stress resistance capability of the system is scientifically
verified.

Common testing tools include LoadRunner [6], JMeter [7],
WebLOAD [8], etc. they will discover the system's

Manuscript received December 30, 2018; revised March 25, 2019.
The authors are with the Academy of Military Sciences PLA China

(e-mail: gongyan2007@gmail.com, huanglinwxs@163.com).

bottleneck by simulating the processing power of the entire
system by simulating thousands of user requests. However,
when these test tools use the timeout mechanism when
sending the request message, that is, when the request time
exceeds the present time, the virtual user stops sending the
request to the system in the future, so that the stress of the
system under test becomes smaller and smaller.

This paper designs and implements a reliable and efficient
stress generation and control system that provides control of
the stress generation model and can simulate high concurrent
stress requests. The remaining chapters of this paper are
organized as follows: Section II describes the stress
generation model, Section III describes the stress generation
and control system we designed and implemented, Section IV
is the experimental construction and experimental results,
and Section V is the summary paper.

II. STRESS GENERATION MODEL DESIGN
The model of stress generation mainly includes two

aspects, one is the change model of the whole stress during
the test process; the other is the control of the stress
generation mode in the second period. In view of the
above-mentioned content, different stress generation models
need to be designed, and the model is controlled in the test to
find out the system bottleneck more accurately and
efficiently and obtain various performance indexes of the
system under test.

This paper proposes the following models for the overall
stress change during the test process. The following will be a
detailed analysis.

A. Constant Stress Generation Model
The simulation request is performed at a fixed stress, and

the strength of the stress during the test is always constant.
The control of this model is relatively simple, and the stress
cannot be dynamically adjusted during the test.

B. Linear Growth Model
Set the initial stress, the growth rate, and the termination

stress. Starting from the initial stress, the stress of the
simulation request is gradually increased according to the
growth rate. After the maximum stress is reached, the stress
change curve is as shown in Fig. 1. The control of this model
is relatively complicated. As the stress increases, the system
under test may have problems such as long response delay
and reduced processing success rate.

We use T to represent the stress value TPS corresponding
to the model; use TS to indicate the preset starting stress; k to
represent the rate of change of stress; tn and ts represent the
current time of the test and the start time of the test,

A Reliable and Efficient Stress Generation and Control
System

Yan Gong and Lin Huang

International Journal of Future Computer and Communication, Vol. 8, No. 2, June 2019

39doi: 10.18178/ijfcc.2019.8.2.537

respectively; P represents the period of change of the test.
When the test stress does not reach the maximum stress, the
current stress is expressed by the formula (1), and when the
stress reaches the maximum value, the maximum value is
used to indicate the current stress.

 () /S n sT T k t t P= + − (1)

 Stress/TPS

Time/sTest starts Test ends

Initial stress

Upper stress limit

Fig. 1. Linear growth model stress curve.

C. Dynamic Change Model.
Set a change period, set a range of variation for each period,

and randomly generate a TPS value within a preset range of
change after each period. The stress value changes randomly
within a certain range with time, without a fixed pattern,
which is relatively consistent with the access situation of
long-term real user's. it is used to simulate the change of TPS
in the design scene at different times of the day. The stress
curve is shown in Fig. 2.

 Stress/TPS

Time/sTest starts Test ends

Initial stress

Upper stress limit

Fig. 2. Dynamic change model stress curve.

We use T to represent the stress value TPS corresponding

to the model; use TS to represent the preset starting stress; use
the function to represent the random number in the interval.
Then the value of the dynamic change model stress TPS is
determined by the formula (2). Indicates that the stress is
randomly floating up and down around the initial stress.

 min max(,)ST T Random R R= + (2)

Following methods are proposed for the stress generation

mode in smaller granularity in seconds.
1) Explosive. The amount of concurrency at the beginning

of each second is generated at the same time, and the
request for the same test concurrency is regenerated in
the next second.

2) Gentle. The test concurrency per second is generated
smoothly over a period of 1 second, with an average
fraction per second or smaller, a certain amount of stress

per small unit time, and the same test is generated in the
same way in the next second with same amount of
concurrency stress.

3) Queued. The test maintains a certain level of
concurrency. When the concurrency limit is reached, no
new test is initiated. A new test will be ran after the
on-going one is finished. That is to say, when the test
generates a new stress request, it first checks the number
of stress requests that have been initiated, and if it does
not reach the set TPS value, new request won’t be
initiated; if the set TPS value is not reached, a new
request will be initiated. The requested amount is filled
to the set TPS value.

Stress generation power/TPS

Time/S1 2

10

20

30

40

50 Explosive
Gentle
Queued

Fig. 3. Comparison of three stress generation methods.

Fig. 3 shows the changes in stress generated by the three

stress generation modes. The lightest color indicates the
explosive stress generation mode. It can be seen that the
instantaneous stress is generated at the beginning of each
second; the dark gray indicates the gentle stress generation
mode, and the stress is generated at ten-time points in one
second, which is generated. The stress curve is relatively flat;
the gray is the queue-type stress generation method. It can be
seen that the stress is not the same at several time points per
second. The reason is that there are several requests in one
second which have already been responded. So the stress
generated by the gray is only to fill the lack.

III. STRESS GENERATION AND CONTROL SYSTEM
The stress generation model has been designed. Following

section will discuss how to use it in a stress control system.
The stress generation model is saved to the stress control
system through the configuration file before the test starts,
and the key information of the model is written into the
shared memory when the process starts. At the same time, a
field is maintained in the shared memory to indicate the stress
TPS value that needs to be generated at present. Then,
according to the stress generation model, the stress value is
periodically calculated and updated into the shared memory.
When the test is triggered, the stress will be triggered per the
value in the memory, thus achieving the purpose of
controlling the stress generation model. The stress is
generated in seconds, and a cycle program is added to the
main program of the execution system to generate the
required stress at a fixed time point, according to the stress
generation mode on the second level.

The stress generation and control system is a core
functional component of the stress test platform. An

International Journal of Future Computer and Communication, Vol. 8, No. 2, June 2019

40

automaton that simulates a stress request is generated using a
scheduler while communicating with the system via
communication module. According to its different functions,
the stress generation and control system consists of four
functional modules: task scheduling, stress control,
concurrency control and statistical control. The relationship
among modules is shown in Fig. 4.

A. Task Scheduling Module
The task scheduling module is the core part of the whole

stress generation and control system to realize the allocation

and scheduling of each function of the test. The main work
flow is:
1) Accepting the control command;
2) Calling the stress control module and controlling the

stress generation model;
3) Call the concurrency control module to apply the

second-level service trigger mode;
4) Select the test script and schedule the automation to

achieve the purpose of generating stress on the system
under test.

Test management and test script library subsystem

Stress control Concurrency control Task scheduling

Statistical control

Scheduler ODBC module

Communication module

Automatic instance pool

System under test

Execution
SQL

Stress generation and control subsystem

Browser

Request/response
HTTP

Database

Testers

Task scheduling

Create an
automaton

Get Stress value Response

Control commands

Read /write

Statistics

Service
scheduling

Test execution subsystem

Calculate the amount of
concurrency Response

Fig. 4. Stress generation and control system module diagram.

B. Stress Control Module
1) Constant stress generation model. When the stress

control module checks the stress control information in
the shared memory, if the set stress generation model is
constant, there is no need to change the stress, and the
stress will always maintain the initial set stress.

2) Linear growth model. The linear growth model has the
following key parameters: initial stress value, maximum
stress value, stress change period, and step size of stress
change. At the beginning of the test, the stress is set to
the initial value, and then the stress is increased in every
cycle until the end of the test or when the ultimate stress
is reached. When the stress control model is a linear
growth one, the stress is increased by cycle. When the
stress exceeds the maximum value, it is set as the
maximum value.

3) Dynamic change model. The main parameters of the
dynamic change model are: the initial value of the stress,
the period of change, the range of variation, and the
stress changes around the initial value during the test. At

the beginning of the test, the stress value is set to the
initial value, and then each cycle randomly generates a
change within the variation range. The initial value is
used as standard, and the amount of change is increased
or decreased to achieve the stress value of the cycle.

C. Concurrency Control Module
The concurrency control module controls the second-level

stress generation mode and generates corresponding
concurrency control information according to the
concurrency mode established by the test. The concurrency
control module obtains the stress control information from
the shared memory and calculates the concurrent stress TPS
according to the time of the test, and returns to the task
scheduling module. The concurrency control module is
periodically scheduled by the task scheduling module and
returns the stress value required to be generated in the current
cycle per the stress generation mode of the second level, the
task scheduling module performs the scheduling of the test
script according to the stress value. The second-level stress
generation mode is calculated as follows.

International Journal of Future Computer and Communication, Vol. 8, No. 2, June 2019

41

1) Explosive. The concurrency control module only needs
to check in seconds, and whenever a new second starts,
new stress is generated. That is to say, the concurrency
control module checks the current time. If the test enters
a new second, the stress value TPS is read from the
shared memory and returned directly, indicating that
stress has to be generated at the instance of new second.

2) Gentle. The concurrency control module subdivides one
second into ten milliseconds. When the test time enters a
new 100 milliseconds, it returns one tenth of the stress
that needs to be generated in this second (TPS).

3) Queued. the TPS value of the stress control module
minus the currently generated one, then the TPS that
need to be generated in this scheduling will be obtained.

D. Statistical Control Module
The statistical control module is mainly responsible for the

information in the statistical testing process. The test business
script records the start time, end time, and run result of the
test during the test. The statistical control module first counts
the total number of requests sent, the total duration of request
processing, the maximum delay, and the minimum delay, and
calculates the average response delay based on the total
amount of transmission and the total execution time. The
average response delay is further divided into average delay
for processing success, the average delay for processing
failures, and the usage of CPU and memory at the
corresponding time points. Then, according to the user
configuration, the statistics of the delay in a certain period are
also collected, including the total number of transmissions,
the number of successes, the number of failures, the
maximum delay, the minimum delay, and the average delay.

IV. EXPERIMENTAL VALIDATION

A. Test Environment
The test environment is shown in Fig. 5. One PC is used as

the user operation host (Intel CoreTM2 P8400 2.26GHz,
3GBDDR), two servers are used to deploy the stress
generation node (Intel 2x4 Core X5450 3.00GHz, 4GBDDR),
and two servers are used to deploy the tested application
system and Database (Intel 2x4 Core X5450 3.00GHz;
4GBDDR, RedHat Enterprise Linux 6.0, DM7.0). The total
number of database table records exceeds 100,000, and the
number of fields per record is 45. The field types include
integer, character, and float. The total database record
capacity is 8G.

HTTP

Database serverApplication server

Stress generating node Stress generating node

Fig. 5. Test environment.

B. Performance Testing
The performance of the stress generation and control

system mainly refers to the ability to simulate the concurrent
stress, so it can be tested by simulating the deployment of a
real test environment and gradually increasing the number of
simulation requests.

The performance test focuses on the following indicators:
1) Message processing delay. Message processing delay is

an important indicator to measure the concurrent
capability. When the amount of the request is large, the
transmission needs to be completed in a short time to
avoid the stress generation and control system because
of the transmission delay. Sometimes it affects the
accuracy of the test.

2) Stress generation and control system load situation.
Large transmission stress will also cause a huge burden
on the stress generation and control system. Each node
has multiple processes, and the load conditions of each
process must be guaranteed to be generally the same.
The stress is accumulated on one or several processes,
affecting the transmission efficiency.

3) Resource occupancy rate. If the stress generation and
control system consume too much CPU resources and
memory resources when processing a large amount of
messages, it may cause an increase in message
transmission delay, and may even result in loss of
messages, which makes stress generation and control
system in an unstable state.

The test results as shown in Table I, from the performance
index data, it can be seen that the stress generation and
control system has a strong ability to process the transmission
of batch messages. The performance can also be extended
horizontally by the expansion of the number of stress
generating nodes.

TABLE I: PERFORMANCE TEST RESULTS

Node Concurrency Delay CPU usage Memory
usage

Single
node 20000tps 0.48ms Average 52%

Peak 63%
Average 58%
Peak 66%

Double
node 30000tps 1.3ms Average 56%

Peak 63%
Average 58%
Peak 68%

C. Stability Test
In general, an indicator of the stability of a system is a

stable operation that can run without problems for 7 x 24
hours. Therefore, the stress generation and control system
also needs to ensure stable operation for at least 7 x 24 hours.
The specific test method is as follows. For different single
test operations, the set stress is cyclically changed, and the
stress value is about 80% of the limit capability. The stress
request is continuously initiated to a system under test, which
is caused by the stability problem of the system under test.
The test is terminated, so the system under test can only
receive messages and respond, without actual operation. The
test results show that the stress generation and control system
can continuously apply stress for more than 15 days, the log
records are normal, the test report is normal, and the stability
requirements are met.

International Journal of Future Computer and Communication, Vol. 8, No. 2, June 2019

42

D. Cross-Platform Capability Test
Cross-platform testing means cross-platform testing of

stress generation and control systems and cross-platform
testing of web pages. The resource generation and
performance of the stress generation and control system on
different platforms, and whether it can run stably, the test
results are shown in Table II. It can be seen from the test
results that on the Kylin4 operating system, although the
resources are relatively large, it can also meet the basic
functional requirements.

TABLE II: CROSS-PLATFORM ABILITY TEST RESULTS

Platform Concurrency CPU usage Memory usage
RedHat 6.0 20000tps 52% 58%
Kylin4 15000tps 72% 86%

Web page cross-platform testing is mainly reflected in the

comparison between different platforms and different
browsers. Usually IE browser only supports Window
operating system, so no need to do the comparison. As for the
comparison of pages, it is mainly compared on browsers such
as FireFox, Chrome and Opera. The test results are shown in
Table III.

TABLE III: WEB PAGE CROSS-PLATFORM TEST RESULTS

Browser Page open speed

FireFox 0.46s
Chrome 0.21s

Opera 0.30s

It can be seen from the test results that the web page of the

stress generation and control system is applied on each
browser, and the speed is slightly different, and the display
and function are normal.

V. CONCLUSION
The generation of stress is not an irregular transmission of

a series of simulation requests, and it is necessary to follow
certain rules in order to measure the system under test in a
more scientific way. This paper designs and implements a
reliable and efficient stress generation and control system
that provides control of the stress generation model and can

simulate high concurrent stress requests. The experimental
results show that the stress generation and control system
supports the testing of the database and the application
system. The concurrent simulation capability is strong, the
message processing time is low, the resources are minimal,
and the system runs stably and reliably.

REFERENCES
[1] M. J. Zhen and E. H. Ahmed, “A Survey on load testing of large-scale

software systems,” IEEE Trans. Softw. Eng, vol. 41, no. 11, pp.
1091-1118, 2015.

[2] J. A. Meira, E. C. Almeida, and G. Sunye, “Stress testing of
transactional database systems,” Journal of information and Data
Management, vol. 4, no. 3, pp. 279-294, 2013.

[3] S. Nejati, S. D. Alesio, and M. Sabetzadeh, “Modeling and analysis of
CPU Usage in safety-critical embedded systems to support stress
testing,” in International Proc. of Model Driven Eng. Languages Syst,
2012, pp. 759-775.

[4] O. Krejcar and L. Motalova, “Home care web services evaluation by
stress testing,” in International Proc. of the e-Technologies and
Networks for Development, 2011, pp. 238-248.

[5] D. Krishnamurthy, J. Rolia, and S. Majumdar, “A synthetic workload
generation technique for stress testing session-based systems,” IEEE
Trans. Softw. Eng. vol. 32, no. 11, pp. 868-882, 2006.

[6] HP LoadRunner software. (2018). [Online]. Available:
https://software.microfocus.com/zh-cn/products/loadrunner-load-testi
ng/overview/

[7] Apache JMeter. (2018). [Online]. Available:
http://jakarta.apache.org/jmeter/

[8] WebLOAD product overview. (2018). [Online]. Available:
http://www.radview.com/

Yan Gong was born in Beijing, China in 1980. He
received his Ph.D. degree in computer science at
Beijing University of Posts and Telecommunications
of China in 2010. He is now the senior researcher in
the Academy of Military Sciences PLA China. His
main research interests include service computing,
software performance engineering and monitoring of
distributed system.

Lin Huang was born in Beijing, China in 1980. She
received her Ph.D. degree in computer science at
Beijing University of Posts and
Telecommunications of China in 2018. She is now
the senior researcher in the Academy of Military
Sciences PLA China. Her main research interests
include software performance engineering and
mining software repositories.

International Journal of Future Computer and Communication, Vol. 8, No. 2, June 2019

43

