

Abstract—Recently, the computing ability of a personal

computer (PC) has rapidly evolved with increases of the CPU

clock rate, the number of cores, and the memory size. Then, the

collection of idling resources of user-PCs will provide an

efficient computing platform with very low costs. To realize this

concept, we have studied the user-PC computing (UPC) system

based on the master-worker model. By adopting the Docker

container, our system allows various jobs or applications to run

on PCs with different platforms and environments. In this

paper, we present the details of the implementations of the UPC

system, including the Docker image generation method for a

given job. Here, to reduce the required time and file size, the

existing environments of the target PC are checked first, and

only the necessary ones are included in the image. For

evaluations, we prepare four PCs with different specifications

for the UPC system and nine jobs with various features as the

applications. Then, we compare the CPU time and the file size to

generate the Docker image for each job using two different PCs,

when the proposed method is adopted or not. Besides, we

measure the CPU time on the master and the worker to

compute each job and the transmitted data size to the worker.

Index Terms—User-PC computing, distributed system,

resource usage, Docker, job management, Docker image

generation.

I. INTRODUCTION

Nowadays, the Grid Computing (GC) system has become

popular as a parallel computing platform for large computing

projects. By connecting a lot of computers via the Internet,

the GC can provide a massive computing ability for engineers

and scientists who need large computing resources. As a

variation, the desktop grid (DG) system adopts Personal

Computers (PCs) as computing machines because current

PCs have achieved sufficient abilities for DG systems [1].

PCs have increased the computing performance with the

faster CPU clock cycle, more CPU cores, the larger memory

size, and the high storage capacity/access speed. Besides,

PCs can be available with very low costs.

Previously, we studied the User-PC Computing (UPC)

system as one style of the DG. The UPC can provide efficient

Manuscript received October 20, 2020; revised December 10, 2020. This

work was supported by the Funabiki Laboratory (Distributed Systems
Design Lab), Department of Electrical and Communication Engineering,

Okayama University, Japan.

H. Htet, N. Funabiki, A. Kamoyedji, M. Kuribayashi, and F. Akhter are
with the Electrical and Communication Engineering Department, Okayama

University, Japan (e-mail: heinhtet@s.okayama-u. ac.jp,
funabiki@okayama-u. ac.jp, cyberntique@gmail.com,

kminoru@okayama-u. ac.jp, p90n6c8t@s.okayama-u. ac.jp).

W.-C. Kao is with the Department of Electrical Engineering, National
Taiwan Normal University, Taipei, Taiwan (e-mail: jungkao@ntnu.edu.tw).

computational platform for members in a group by using

idling computing resources of their PCs [2]. Unlike the

Volunteer Computing (VC) system [3], the UPC system can

achieve the higher dependency by using the trusted PCs for

the computing resources in the same organization or group.

Using the Docker container, UPC allows various jobs or

applications to run on PCs with various platforms and

environments [4].
Container based technologies including Docker are much

efficient at various computing environments. The Docker

container technology is adopted in the UPC system to avoid

platform constraints and dependencies in executing jobs on

user-PCs. Docker can quickly assemble applications from

components to afford different environments.
Docker is a software tool that has been designed to make it

easier to create, deploy, and run an application program on

various platforms using a container [5]. The container allows

the application developer to package up the required software

to run the application program, such as libraries, middleware,

parameters, and other dependencies, into one package called

the container image, to be shipped out. The Docker container

image is a lightweight, standalone, and executable package of

every software needed to run the application. It includes the

codes, the runtime environment, the system tools, the system

libraries, and the settings.

The UPC system has been designed with the

master-worker model as in Fig. 1. The usage flow of the UPC

system is as follows: 1) a UPC user submits a computing

project to the UPC master through the Web server, 2) the

master divides the project into a set of jobs, 3) the master

generates the Docker image for each job, 4) the master finds

the schedule of assigning the jobs to UPC workers, 5) the

master transmits the Docker images of the jobs to the

scheduled workers, 6) the UPC worker computes the

assigned job using the Docker container technology and

transmits the result to the master when it is finished, 7) the

master receives the job result from the worker, and 8) the

master returns the project result to the user when it receives

the results for all the jobs.
In this paper, we present the implementation of the UPC

system including the Docker container. To reduce the time to

generate the Docker image for a submitted job from a user

and reduce the size, the existing environments of the worker

PC that will be assigned the job, are checked from the log

information of the previous jobs on the PC. Then, only the

An Implementation of User-PC Computing System Using

Docker Container

H. Htet, N. Funabiki, A. Kamoyedji, M. Kuribayashi, F. Akhter, and W.-C. Kao

International Journal of Future Computer and Communication, Vol. 9, No. 4, December 2020

66doi: 10.18178/ijfcc.2020.9.4.568

newly necessary environments are included in the Docker

image.

Fig. 1. Master-worker model in UPC system.

For evaluations of the implemented UPC system, we

measure the CPU time to compute nine jobs of various

features when they are computed on the system with four PCs

that have different CPU architecture including the number of

logical and physical cores. These jobs represent a network

simulation, a convolutional neural network, an image

compression, and are implemented by C++, C, Assembly,

and Python.
In addition, to verify the effectiveness of the proposed

Docker image generation, we measure the CPU time to

generate the Docker image and the size for the same jobs on

two different PCs, and evaluate the reductions of the total

CPU time and the size of the Docker images over nine jobs by

applying our proposal.

The rest of this paper is organized as follows: Section II

discusses relevant works in literature. Sections III, IV, and V

present the implementation of the UPC Web server, the

master, and the worker, respectively. Section VI evaluates the

implementations in the system. Finally, Section VII

concludes this paper with future works.

II. RELATED WORKS IN LITERATURE

In this section, we briefly present related works in this

paper.

In [6], Benjamin et al. presented comparisons of the

behaviors of four virtualization tools in grid computing

environments. The authors measured the CPU, memory, disk,

and network usage by executing the micro benchmark

programs in each VM tools and evaluated the linearity,

overhead, and performance isolation. This work helps the

user to select the suitable tool according to the application’s

nature.

In [7], Xavier et al. presented performance evaluations

between the containerization and the virtualization for HPC

applications. The authors found that the containerization is

the lightweight alternative to the virtualization for HPC

applications.

In [8], Park et al. presented a container-based cluster

management platform to provide dynamic distributed

computing environments desired by users. The authors

compare the performance between the Docker-based

execution and the native one by using two benchmark tools

implemented with C, Java, Python, and R, and showed that

Docker offers the near-native performance.

In [9], Jaikar et al. focused on executions of scientific jobs

that require intensive resources in cloud computing

environments. They proved that the Docker container

outperforms the OpenStack virtual machine to execute the

CPU and memory intensive jobs. Besides, the Docker

container consumes the less power while executing scientific

jobs.

III. IMPLEMENTATION OF UPC WEB SERVER

In this section, we present the software platform and

fundamental functions of the UPC Web server.

A. Software Platform

The UPC Web server is implemented using Node.js that is

an open source server environment and can run on various

platforms including Linux, Windows, UNIX, and Mac OS.

Thus, the functions of job accepting, result reception and

downloading are described by JavaScript. Node.js offers the

interpreter and the running environment of JavaScript source

codes on the server [11].

In the UPC system as revealed in Figure 2, Node.js runs on

the Linux OS. Node.js has a built-in module called HTTP to

create the HTTP-based server that listens to server ports and

gives responses to the UPC master. The user interface is

implemented using HTML5 and CSS files. The file system is

also controlled by JavaScript codes.

Fig. 2. User interface for UPC system.

B. Threads for Basic Functions

The three basic functions of the UPC Web server are

implemented with different threads as follows.
1) The job acceptance thread may accept the jobs that are

submitted through the Web interface. A user can

submit a job that consists of the source codes, the

required platform and libraries lists.

2) The job transmission thread transfers the submitted

jobs to the UPC master using SSH File Transfer

Protocol (SFTP) [12].

3) The result reception thread receives the results of the

job from the UPC master and store them so that the user

can download them from the Web interface.

International Journal of Future Computer and Communication, Vol. 9, No. 4, December 2020

67

C. Data Synchronization

For both interactive and automated file transfers between

the Web server and the UPC master, SSH File Transfer

Protocol (SFTP) is used as the secure file transfer protocol

supporting the full security, so that the file synchronization is

secured and relied. SSH File System (SSHFS) [13] is used at

the master to mount the directories and the files located in the

Web server.

IV. IMPLEMENTATION OF UPC MASTER

In this section, we present the software platform and

fundamental functions of the UPC master.

A. Software Platform

The source codes of the UPC master are implemented

using Python for the server offering the multi-threaded

programming [18].
The MySQL server [19] is adopted for the database to

manage the information of the PCs for the UPC worker.

Multiple UPC workers can connect to the UPC master at the

same time, where one thread is allocated to each worker. The

Python multi-threaded module can provide the powerful,

high-level supports for the threads.

Besides, the Docker container technology [20] is used to

provide the flexibility and portability for running various jobs

on different worker PC platforms. Docker is an open source

platform for developing, shipping, and running an application

on an arbitrary PC environment. It builds the Docker image

to offer the software environment for running each job,

including the source codes, so that the job can run on a

worker without considering the installed software.

B. Threads for Basic Functions

The four basic functions of the UPC master are

implemented with different threads as follows.
1) The job management thread receives the request for a

new job from the Web server by detecting the newly

updated files using SFTP. Then, it prepares a new job

by unzipping, inserting and modifying the Docker file

template, then builds and saves the complete job

running environment to the job queue.

2) The worker management thread receives the joining

request from a UPC worker. When the master receives

the request, it creates a new thread for the new worker,

collects the information on the worker, and stores them

at the master’ database.
3) The job transmission thread sends a job in the job

queue to the assigned worker, which is continued until

the job queue is empty.
4) The result uploading thread sends the result from the

worker to the UPC Web server using SFTP.

C. Docker Image Generation

The UPC master accepts the jobs from the Web server and

prepares the Docker file for each job to build the Docker

image that bundle the environment and the application, and

execute it as a Docker container, as shown in Figure 3. The

Docker image can be generated from the Docker file that

contains the list of the instructions. In our Docker image

generation method, the Docker file is automatically created

by analyzing the list of requirements for the job from the user

and the extensions of source codes. To reduce the generation

time and the size of the Docker image file, it checks the

previously built Docker image for the worker PC, and only

the necessary files are included in the image. Figure 4 shows

the details of the process.

Fig. 3. Docker image generation process overview.

Fig. 4. Docker image generation process details.

In details, the UPC master performs the following steps to

generate the Docker Image for each submitted job.

1) It unzips the job, examines the program type, and

explores the requirement list.

2) It compares and checks the information obtain at step 1.

with the log data under the temporary information

directory that stores the previously built Docker image

information.
3) It refers the previous built Docker image if the running

environment, libraries, and dependencies are almost

similar with the current job’s requirements.
4) Otherwise, it refers the base image of the previously

built Docker image when only the running environment

is same.
5) Otherwise, it generates a new Docker image for the

current job by following the instructions of the

generated Docker file.
6) It accesses to Public Remote Repository to download

and install the necessary images, libraries, and

platforms, and chooses the small and light package to

reduce the image size to a minimum.
7) It saves them as a Docker image when successfully

finished, and adds it in the correspondence job list.

International Journal of Future Computer and Communication, Vol. 9, No. 4, December 2020

68

D. Worker Management

When a PC joins the UPC system as a worker, the UPC

master collects the static performance information of the PC,

such as the memory size, the CPU frequency, the number of

cores, and the hard disk size. The master also periodically

collects the dynamic performance information of the PC,

such as the percentage of the current resource usage and the

available resource status. The UPC master records all the

information in the database. Thus, if the worker cannot keep

running the job because the resource usage exceeds the upper

limit, the UPC master can detect it. In this case, the UPC

master can send stop alert of running UPC job to the worker

and resume alert when resources are available to use.

V. IMPLEMENTATION OF UPC WORKER

In this section, we present the software platform and

fundamental functions of the UPC worker.

A. Software Platform

The source codes of the UPC worker are also implemented

using Python for the clients offering the multi-threaded

programming. The Docker container technology is used to

run the Docker image for each job on the worker assigned by

the UPC master.

B. Threads for Basic Functions

The five basic functions of the UPC worker are

implemented with different threads as follows.
1) The connection initiation thread finds the address and

the port of the UPC master from the socket. Then, the

worker is connected to the UPC master by sending the

necessary information.

2) The job reception thread receives the Docker image

for the job with the .tar file and temporarily allocates it

in the disk space of the worker.
3) The job execution thread starts to load and run the

received Docker image as a container.

4) The job restoring thread saves the current running

states of the job in the hard disk and sends the state to

the master when the worker PC runs out all the

available resources.
5) The result transmission thread transfers the result of

the job when successfully completing it. Then, it

automatically removes the Docker image and the

container from the disk space of the worker.

C. Resource Usage Measurement

The resource usage of the UPC worker is measured using

psutil (process and system utilities), a Python cross-platform

library. psutil can monitor, profile, and limit the process

resources, and manage the running processes [10].

Figs. 5 and 6 show the CPU and memory usage rates of one

student’s PC in our group for one weekday. psutil recorded

the resource usage rates at every one minute. Both usage rates

significantly increased at the daytime from 8:30am to 6:30pm.

It is found that the CPU usage rate is not high for the whole

day where it stays between 2% and 5%. Thus, the CPU has

sufficient capability of running the job in the UPC system.

On the other hand, the memory usage rate is relatively high

for the whole day where it stays between 56% and 62%.

Therefore, it is necessary to consider the proper memory use

for running the job in the UPC system.

Fig. 5. CPU usage rate of student’s PC.

Fig. 6. Memory usage rate of student’s PC.

D. Job Control Function

In the UPC system, the running job on a worker must not

disturb the use of the PC by the owner. As shown in the

previous subsection, the memory usage rate is generally high.
Therefore, the job control function is implemented to stop

the running job and free the memory for the job, when the

memory usage rate becomes higher than the given threshold.

In this study, 90% is selected for the threshold from our

experiment results that will be shown in Section VI. Then, we

discuss the implementation of worker PC memory control on

Linux or Windows operating system.

First, we discuss the implementation for Linux. kill

command is used to stop the job. Then, ’kill -STOP

#Process-Name’ command is used to free the memory. If the

job can run there again, ’kill -CONT #ProcessName’

command is used to resume the job.

Next, we discuss the implementation for Windows.

taskkill command is used to stop the job.

Then, ’Stop-Process -Name #ProcessName’ command is

used to free the memory. If the job can run there

again, ’Cont-Process -Name #ProcessName’ command is

used to resume the job.

International Journal of Future Computer and Communication, Vol. 9, No. 4, December 2020

69

VI. EXPERIMENTS

In this section, we conduct experiments of the improved

UPC system.

A. Experiment Setup

In our experiments, we adopt one Master PC and four

worker-PCs in Table I. These worker PCs can be regarded

into two groups as PC-1, 2 and PC-3, 4 depending upon the

number of cores. Then, we adopt two C++, three C and four

Python programs for jobs in Table III. The PCs are connected

with the master through the 100Mbps wired Ethernet, and

have the SSD disks.

The two C++ programs (Palabos [14], Flow [15]) were

physic simulation programs that consumed memory usage a

lot. The two C programs (Network Simulator, Optimization

Algorithm) were developed in our group for wireless network

studies [16]. The three Python programs (DCGAN, RNN,

and CNN) were picked up from the GitHub repository for

neural networks [17]. They require high computing resources.

The remaining one C program (FFmpeg) [21] and one Python

program (Converter) [22] are related with processing of

multimedia content. Nowadays, multimedia content

processing is becoming popular and working with large

content takes more processing time.

TABLE I: PC SPECIFICATIONS IN EXPERIMENTS

B. Worker Usability by CPU Rate

First, we conduct the experiment of verifying the usability

of the worker, when CPU usage rate of the PC is very high

while running a UPC job. Here, we run the Python program

for Convolutional Neural Network (CNN) five times on PC-3,

and check the operability of the PC.

Fig. 7 shows the change of the CPU usage rate and the CPU

time of the job execution. At the first run, the job occupies

332% of the total CPU resource, which indicates that three

cores are fully occupied. At the second-fifth runs, when the

PC owner has daily computational processes of Word,

PowerPoint, Web access, the operating system automatically

controls them at the higher priority than the jobs for the UPC

system, and reduces the assigned CPU resource to the job at

296%, 224%, 181%, and 315%, respectively. Thus, no

disturbance occurs in handling the owner processes.

C. Worker Usability by Memory Rate

Next, we conduct the experiment of verifying the usability

of the worker PC, when the memory usage rate of the PC is

very high. Figure 8 shows the change of the memory usage

rate and the CPU time of the job program. The PC does not

work properly at the fourth run. When it exceeds 90%, the PC

is hung up and needs to be rebooted, where all the running

processes are lost. Therefore, the memory usage rate for the

UPC job must be carefully controlled to avoid the problem.

Fig. 7. CPU usage rate by CNN program.

Fig. 8. Memory usage rate without control.

D. Job Control Result

Then, we apply the implemented job control function. Fig.

9 shows the change of the memory usage rate when the same

CNN program runs on the PC five times. Every time the rate

exceeds the given threshold (90%), the job is automatically

stopped and about 36% of the memory is released to keep

running daily processes by the PC owner.

Fig. 9. Memory usage rate with control.

E. Docker Image Generation

Besides, to verify the effectiveness of the proposed Docker

image generation method, we measure the CPU time to

generate the Docker image and the file size for the same jobs

 PC PC-1 PC-2 PC-3 PC-4 Master

processor type core-i3 core-i5 core-i7 core-i9 core-i5

number of cores 4 4 8 16 4

clock frequency (GHz) 1.70 2.60 3.40 3.60 3.20

memory available 2 2 4 8 8

(GB) total 4 4 8 16 8

disk available 64 64 64 64 225

(GB) total 500 500 500 500 225

International Journal of Future Computer and Communication, Vol. 9, No. 4, December 2020

70

on two different PCs, and evaluate the reductions of the total

CPU time and the size of the Docker images by our proposal.

Usually, the Docker image is generated at the UPC master in

the UPC system. Table II compares the CPU time and the file

size on the master and PC-1 that is the slowest PC, before and

after applying the proposal. As the effectiveness, the total

image generation time is reduced to 7min. 24sec. at the

master and 17min. 04sec. at PC-1 and the total image size for

the nine jobs is reduced to around 3.126 GB.

TABLE II: EVALUATION OF DOCKER IMAGE GENERATION

jobs
Image generation time (H:M:S) Image size (GB)

master PC-1 master
before after before after before after

Simulator 0:01:03 0:00:19 0:02:36 0:00:38 0.395 0.217
Algorithm 0:00:42 0:00:12 0:01:10 0:00:12 1.5 0.892
DCGAN 0:01:35 0:01:09 0:03:33 0:02:28 1.9 1.83

RNN 0:01:27 0:00:28 0:03:18 0:00:42 1.8 1.78
CNN 0:02:24 0:01:36 0:05:16 0:04:25 3.3 3.26

FFmpeg 0:02:37 0:02:10 0:06:37 0:06:13 4.4 3.16
Convert 0:03:49 0:01:47 0:11:07 0:04:34 3.5 2.89
Palabos 0:06:19 0:05:04 0:12:07 0:09:48 6.7 6.34

Flow 0:01:31 0:01:18 0:03:36 0:03:16 0.441 0.441

total 0:21:27 0:14:03 0:49:20 0:32:16 23.93 20.81

Reduced 0:07:24 0:17:04 3.126

F. Measurements of Resource Usage by Jobs

Now, we measure the resource usage of the four PCs by the

nine jobs. Table III shows the CPU time, the memory usage

rate, and the required disk space of each job.

TABLE III: FEATURES OF NINE JOB PROGRAMS

Jobs CPU time (H:M:S) Memory usage rate (%) Disk space (GB)

PC-1 PC-2 PC-3 PC-4 PC-1 PC-2 PC-3 PC-4 PC-1 PC-2 PC-3 PC-4

Simulator 02:16:12 01:08:10 00:55:47 00:41:06 0.68 0.67 0.17 0.08 0.393 0.393 0.393 0.393

Algorithm 00:44:04 00:28:59 00:22:48 00:16:14 0.69 0.67 0.18 0.07 1.37 1.37 1.37 1.37

DCGAN 01:41:29 01:13:43 00:26:59 00:17:00 38.69 37.76 12.18 4.2 1.87 1.87 1.87 1.87

RNN 00:21:19 00:15:37 00:10:39 00:09:13 30.36 29.77 7.86 2.08 1.84 1.84 1.84 1.84

CNN 00:32:23 00:28:41 00:13:26 00:11:43 35.03 36.87 11.74 4.53 4.04 4.04 4.04 4.04

FFmpeg 00:52:57 00:38:09 00:19:43 00:14:19 21.69 18.04 5.12 1.04 4.43 4.43 4.43 4.43

Converter 00:24:25 00:18:50 00:12:57 00:12:09 18.89 18.03 5.23 2.19 3.46 3.46 3.46 3.46

Palabos 00:27:28 00:23:15 00:20:01 00:19:06 42.96 47.98 14.63 4.46 6.68 6.68 6.68 6.68

Flow 00:27:09 00:16:34 00:12:57 00:10:21 47.97 48.05 15.14 5.08 0.43 0.43 0.43 0.43

total 07:47:26 05:11:58 03:15:17 02:31:11

TABLE IV: CPU TIME AND TRANSMISSION DATA SIZE FOR NINE JOB PROGRAMS

Jobs
CPU time on master (H:M:S) CPU time on worker (H:M:S)

Total CPU

time

Transmission data
size

Assigned
worker Build Save Transfer Load Run Transmit Docker

(GB)
Result
(KB)

Simulator 00:00:19 00:00:56 00:00:11 00:00:07 00:53:25 00:00:40 00:55:38 0.217 17 PC-3

Algorithm 00:00:12 00:01:04 00:01:05 00:01:51 00:23:16 00:00:40 00:28:08 0.892 8 PC-2

DCGAN 00:01:09 00:01:29 00:01:37 00:00:34 00:11:09 00:00:55 00:16:53 1.83 20 PC-4

RNN 00:00:28 00:01:32 00:01:36 00:00:22 00:04:36 00:00:40 00:09:14 1.78 8 PC-4

CNN 00:01:36 00:02:09 00:02:34 00:00:59 00:03:42 00:00:40 00:11:40 3.26 4 PC-4

FFmpeg 00:02:10 00:01:54 00:02:16 00:01:23 00:04:58 00:01:50 00:14:31 3.16 1.7e+6 PC-4

Converter 00:01:47 00:03:50 00:01:39 00:04:51 00:07:54 00:00:30 00:20:31 2.89 179300 PC-2

Palabos 00:05:04 00:01:22 00:00:11 00:02:52 00:20:20 00:01:25 00:31:14 6.34 250 PC-1

Flow 00:01:18 00:00:21 00:00:20 00:00:49 00:24:43 00:00:00 00:27:31 0.438 0 PC-1

total 03:35:20

The first two jobs are C programs that do not use

multi-thread. Thus, the CPU time is not much different

between the worker PCs except PC-1 that has lack of

maximum turbo frequency feature. They do not consume

much memory. The next three neural networks jobs are

Python programs that use multi-thread. Thus, the CPU time is

much different between the worker PC-1,2 and PC-3,4. They

consume much memory.

Among two multimedia processing jobs, C program

(FFmpeg) use multi-thread and so, the CPU time is much

different, however, Python program (Converter) do not use

multi-thread and the CPU time is not much different between

the worker PC-1,2 and PC3,4. The last two physic simulation

jobs are C++ programs that use only two and four threads

during execution. Therefore, the CPU time is not much

different be-tween PC-1,2 and PC-3,4. However, these

simulation programs consume much memory.

G. Measurements of CPU Time and Disk for UPC System

Then, we measure the CPU time and the disk space

required to execute each job in the UPC system. After a job is

submitted to the UPC master through the Web server, the job

is processed in the following six steps:1) building the Docker

image file at the master (Build), 2) saving the image file in

the disk at the master (Save), 3) sending the image file from

the master to one worker (Transfer), 4) receiving the image

file and loading it into the memory at the worker (Load), 5)

running the job program at the worker (Run), and 6) sending

back the result from the worker to the master (Transmit).

Thus, the CPU time for each of the six steps is measured.

International Journal of Future Computer and Communication, Vol. 9, No. 4, December 2020

71

Table IV shows the CPU time required for each step of the

nine jobs on the master and on one worker, and the data size

for transmissions between the master and the worker. Here,

we assign a job to a worker in descending order of the CPU

time for the jobs in Table III. The image building time is

reduced by referencing the similar previously built image

around one minute. However, it can be saved a lot time for

the regions where the Internet communication speed is poor

to download the necessary packages from the remote official

repositories and for low performance PC to install all the

downloaded packages. The running time on a worker

dominates the required time for each job. Thus, the proper

worker assignment for each job is critical in improving the

performance of the UPC system. It will be in our future

works.

VII. CONCLUSION

This paper presented the implementation of the UPC

system using the Docker container to run various jobs on

various worker PCs. The CPU time was measured when nine

jobs with various features were computed on four PCs with

different CPU architecture. The effectiveness of the Docker

image generation method was verified by comparing the total

CPU time and the file size before and after applying the

proposed method on two PCs for each job. In future works,

we will implement the job migration function of dynamically

changing the assigned worker of the currently running job to

another one, when the performance of the current worker is

low and that of the new worker is high, and study the job

scheduling method to efficiently assign the jobs to the

workers including the job migration.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

H. Htet designed and implemented the system; N. Funabiki

supervised the research and revised the paper; A. Kamoyedji

and F. Akhter took part in conducting measurements; M.

Kuribayashi co-supervised the research; W.-C. Kao analyzed

the paper and checked the grammatical errors; all authors had

approved the final version.

REFERENCES

 [1]

 Desktop grid.

[Online]. Available:

http://www.desktopgrid.hu

[2]

 N. Funabiki, K. S. Lwin, Y. Aoyagi, M. Kuribayashi, and W.

C. Kao,

“A user-PC computing system as ultralow-cost computation platform

for small groups,”

Application and Theory of Computer Technology,

vol.

2, no.

3, pp.

10-24, 2017.

[3]

 L. F. G. Sarmenta, “Sabotage-tolerance mechanisms for volunteer

computing

system,” Future Gen. Com. Sys.,

vol.

18, no.

4, pp. 561-572,

2002.

[4]

 H. Htet, N. Funabiki, A. Kamoyedji, and M. Kuribayashi, “Design and

implementation of improved user-PC computing system,”

Technical

Committee on Network Systems (NS), pp.37-42, 2020.

[5]

 Docker.

[Online]. Available:

https://docs.docker.com/get-docker/

[6]

 Q.

Benjamin, N. Vincent, and C. Franck, “Selecting a virtualization

system for grid/P2P largescale emulation,”

Workshop on Experimental

Grid testbeds for the assessment of large-scale distributed applications

and tools,

France, 2006.

[7]

 X. Miguel, N. Marcelo, R. Fabio,

F. Tiago, L. Timoteo, and R.

Cesar,

“Performance evaluation of container-based virtualization for high

performance computing environments,”

in Proc. 16th Euro micro

Conference on Parallel, Distributed and Network-Based Processing,

pp.

233-240,

2013.

[8]

 P. J. Won

and H. Jaegyoon, “Container-based cluster management

system for user-driven distributed computing,”

KIISE Transactions on

Computing Practices, pp.

587-595, 2015.

[9]

 J. Amol, B. Sangwook, H. Heejune, K. Byungyun, A. Syed, and N.

Seo-Young, “OpenStack and docker comparison for scientific

workflow w.r.t. execution and energy,”

2016.

[10]

Psutil. [Online]. Available:

https://pypi.org/project/psutil/

[11]

Node.js.

[Online]. Available:

https://nodejs.org/en/

[12]

SFTP.

[Online]. Available:

https://www.ssh.com/ssh/sftp/

[13]

SSHFS.

[Online]. Available:

https://wiki.archlinux.org/index.php/SSHFS

[14]

J. Latt, “Palabos, parallel lattice Boltzmann solver,” FlowKit,

Lausanne, Switzerland, 2009.

[15]

Open Porous Media (OPM) Initiative, “Flow: Fully Implicit Black-Oil

Simulator,” 2018.

[16]

M. M. Islam, N. Funabiki, M. Kuribayashi, S. K. Debnath, K. I.

Munene, K. S. Lwin, R. W. Sudibyo, and M. S. A. Mamun, “Dynamic
access-point configuration approach for elastic wireless local-area

network system and its implementation using Raspberry Pi,”

Int. J.

Netw. Comput.,

vol. 8, no. 2, pp. 254-281, July 2018.

[17]

Neural

network.

[Online]. Available:

https://github.com/aymericdamien/TensorFlow-Exa

mples/tree/master/examples/3_NeuralNetworks

[18]

Python.

[Online]. Available:

https://docs.python.org/3/library/socketserver.html

[19]

MySQL.

[Online]. Available:

https://dev.mysql.com/doc/refman/8.0/en/

[20]

Docker

container.

[Online]. Available:

https://www.docker.com/resources/what-container

[21]

FFmpeg.

[Online]. Available:

https://github.com/FFmpeg/FFmpeg

[22]

Converter. [Online]. Available:

https://github.com/andyp123/mp4_to_mp3

Copyright

© 2020

by the authors. This is an open access article distributed

under the Creative Commons

Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

H. Htet received the B.E. and M.E. degrees in

information science and technology from the
University of Technology (Yatanarpon Cyber City),

Myanmar, in 2015 and 2018, respectively. He is

currently a Ph.D. student in Graduate School of
Natural Science and Technology at Okayama

University, Japan.

His research interests include
distributed computing system, big data analysis,

computer networks, heterogeneous computing

International Journal of Future Computer and Communication, Vol. 9, No. 4, December 2020

72

ACKNOWLEDGMENT

I would like to express my deep gratitude to Professor

Nobuo Funabiki for his valuable and constructive

suggestions during the planning and development of this

research work. I would also like to thank to Professor

Wen-Chung Kao and Associate Professor Minoru

Kuribayashi for their patient guidance, encouragement and

useful critiques of this research. My grateful thanks are also

extended to Mr. Ariel Kamoyedji and Ms. Fatema Akhter for

their support in conducting measurements and useful advices.

Finally, I wish to thank my parents, Prof. Nobuo Funabiki,

Japanese Government and MEXT scholarship Japan for

supporting and encouraging throughout my study.

http://www.desktopgrid.hu/
https://docs.docker.com/get-docker/
https://pypi.org/project/psutil/
https://nodejs.org/en/
https://www.ssh.com/ssh/sftp/
https://wiki.archlinux.org/index.php/SSHFS
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks
https://docs.python.org/3/library/socketserver.html
https://dev.mysql.com/doc/refman/8.0/en/
https://www.docker.com/resources/what-container
https://github.com/FFmpeg/FFmpeg
https://github.com/andyp123/mp4_to_mp3
https://creativecommons.org/licenses/by/4.0/

devices, and controller.

N. Funabiki received the B.S. and Ph.D. degrees in

mathematical engineering and information physics

from the University of Tokyo, Japan, in 1984 and

1993, respectively. He received the M.S. degree in

electrical engineering from Case Western Reserve
University, USA, in 1991. From 1984 to 1994, he was

with Sumitomo Metal Industries, Ltd., Japan. In 1994,
he joined the Department of Information and

Computer Sciences at Osaka University, Japan, as an

assistant professor, and became an associate professor
in 1995. He stayed at University of Illinois, Urbana Champaign, in 1998, and

at University of California, Santa Barbara, in 2000-2001, as a visiting
researcher. In 2001, he moved to the Department of Communication

Network Engineering (currently, Department of Electrical and

Communication Engineering) at Okayama University as a professor. His
research interests include computer networks, optimization algorithms,

educational technology, and Web technology. He is a member of IEEE,
IEICE, and IPSJ.

A. Kamoyedji is currently a Ph.D. student in Graduate
School of Natural Science and Technology at

Okayama University, Japan. His research interests
include are optimization, scheduling algorithm Design

and UPC system. He holds a master degree in system

and information engineering from Ashikaga Institute
of Technology, Japan.

M. Kuribayashi received the B.E., M.E., and D.E.
degrees from Kobe University, Kobe, Japan, in 1999,

2001, and 2004. From 2002 to 2007, he was a research

associate in the Department of Electrical and
Electronic Engineering, Kobe University. In 2007, he

was appointed as an assistant professor at the Division
of Electrical and Electronic Engineering, Kobe

University. Since 2015, he has been an associate

professor in the Graduate School of Natural Science
and Technology, Okayama University. His research

interests include digital watermarking, information security, cryptography,
and coding theory. He received the Young Professionals Award from IEEE

Kansai Section in 2014. He is a senior member of IEEE.

D. Akhter received her B.S. in computer science and

engineering from Jatiya Kabi Kazi Nazrul Islam
University, Bangladesh in 2016. In recognition of her

academic achievement, she was awarded Gold Medal

from the President of Bangladesh in 2017. She is

currently doing her M.S. in Electronic and Information

Systems Engineering, Okayama University, Japan
under MEXT scholarship of Japanese

Government. Her research interest includes wireless
communication and network security. She is a

student member of IEEE.

W.-C. Kao received the M.S. and Ph.D. degrees in

electrical engineering from National Taiwan

University, Taiwan, in 1992 and 1996, respectively.
From 1996 to 2000, he was a Department Manager at

SoC Technology Center, ERSO, ITRI, Taiwan. From
2000 to 2004, he was an Assistant Vice President at

NuCam Corporation in Foxlink Group, Taiwan. Since

2004, he has been with National Taiwan Normal
University, Taipei, Taiwan, where he is currently a

Professor at Department of Electrical Engineering and
the Dean of School of Continuing Education. His current research interests

include system-on-a-chip (SoC), flexible electrophoretic display, machine

vision system, digital camera system, and color imaging science. He is a
senior member of IEEE.

International Journal of Future Computer and Communication, Vol. 9, No. 4, December 2020

73

