
  

  

Abstract—Recently, the computing ability of a personal 

computer (PC) has rapidly evolved with increases of the CPU 

clock rate, the number of cores, and the memory size. Then, the 

collection of idling resources of user-PCs will provide an 

efficient computing platform with very low costs. To realize this 

concept, we have studied the user-PC computing (UPC) system 

based on the master-worker model. By adopting the Docker 

container, our system allows various jobs or applications to run 

on PCs with different platforms and environments. In this 

paper, we present the details of the implementations of the UPC 

system, including the Docker image generation method for a 

given job. Here, to reduce the required time and file size, the 

existing environments of the target PC are checked first, and 

only the necessary ones are included in the image. For 

evaluations, we prepare four PCs with different specifications 

for the UPC system and nine jobs with various features as the 

applications. Then, we compare the CPU time and the file size to 

generate the Docker image for each job using two different PCs, 

when the proposed method is adopted or not. Besides, we 

measure the CPU time on the master and the worker to 

compute each job and the transmitted data size to the worker. 

 
Index Terms—User-PC computing, distributed system, 

resource usage, Docker, job management, Docker image 

generation. 

 

I. INTRODUCTION 

Nowadays, the Grid Computing (GC) system has become 

popular as a parallel computing platform for large computing 

projects. By connecting a lot of computers via the Internet, 

the GC can provide a massive computing ability for engineers 

and scientists who need large computing resources. As a 

variation, the desktop grid (DG) system adopts Personal 

Computers (PCs) as computing machines because current 

PCs have achieved sufficient abilities for DG systems [1]. 

PCs have increased the computing performance with the 

faster CPU clock cycle, more CPU cores, the larger memory 

size, and the high storage capacity/access speed. Besides, 

PCs can be available with very low costs.  

Previously, we studied the User-PC Computing (UPC) 

system as one style of the DG. The UPC can provide efficient 
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computational platform for members in a group by using 

idling computing resources of their PCs [2]. Unlike the 

Volunteer Computing (VC) system [3], the UPC system can 

achieve the higher dependency by using the trusted PCs for 

the computing resources in the same organization or group. 

Using the Docker container, UPC allows various jobs or 

applications to run on PCs with various platforms and 

environments [4].  
Container based technologies including Docker are much 

efficient at various computing environments. The Docker 

container technology is adopted in the UPC system to avoid 

platform constraints and dependencies in executing jobs on 

user-PCs. Docker can quickly assemble applications from 

components to afford different environments.  
Docker is a software tool that has been designed to make it 

easier to create, deploy, and run an application program on 

various platforms using a container [5]. The container allows 

the application developer to package up the required software 

to run the application program, such as libraries, middleware, 

parameters, and other dependencies, into one package called 

the container image, to be shipped out. The Docker container 

image is a lightweight, standalone, and executable package of 

every software needed to run the application. It includes the 

codes, the runtime environment, the system tools, the system 

libraries, and the settings. 

The UPC system has been designed with the 

master-worker model as in Fig. 1. The usage flow of the UPC 

system is as follows: 1) a UPC user submits a computing 

project to the UPC master through the Web server, 2) the 

master divides the project into a set of jobs, 3) the master 

generates the Docker image for each job, 4) the master finds 

the schedule of assigning the jobs to UPC workers, 5) the 

master transmits the Docker images of the jobs to the 

scheduled workers, 6) the UPC worker computes the 

assigned job using the Docker container technology and 

transmits the result to the master when it is finished, 7) the 

master receives the job result from the worker, and 8) the 

master returns the project result to the user when it receives 

the results for all the jobs.  
In this paper, we present the implementation of the UPC 

system including the Docker container. To reduce the time to 

generate the Docker image for a submitted job from a user 

and reduce the size, the existing environments of the worker 

PC that will be assigned the job, are checked from the log 

information of the previous jobs on the PC. Then, only the 
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newly necessary environments are included in the Docker 

image. 

 

 
Fig. 1. Master-worker model in UPC system. 

 
For evaluations of the implemented UPC system, we 

measure the CPU time to compute nine jobs of various 

features when they are computed on the system with four PCs 

that have different CPU architecture including the number of 

logical and physical cores. These jobs represent a network 

simulation, a convolutional neural network, an image 

compression, and are implemented by C++, C, Assembly, 

and Python.  
In addition, to verify the effectiveness of the proposed 

Docker image generation, we measure the CPU time to 

generate the Docker image and the size for the same jobs on 

two different PCs, and evaluate the reductions of the total 

CPU time and the size of the Docker images over nine jobs by 

applying our proposal. 

The rest of this paper is organized as follows: Section II 

discusses relevant works in literature. Sections III, IV, and V 

present the implementation of the UPC Web server, the 

master, and the worker, respectively. Section VI evaluates the 

implementations in the system. Finally, Section VII 

concludes this paper with future works. 

 

II. RELATED WORKS IN LITERATURE 

In this section, we briefly present related works in this 

paper.  

In [6], Benjamin et al. presented comparisons of the 

behaviors of four virtualization tools in grid computing 

environments. The authors measured the CPU, memory, disk, 

and network usage by executing the micro benchmark 

programs in each VM tools and evaluated the linearity, 

overhead, and performance isolation. This work helps the 

user to select the suitable tool according to the application’s 

nature. 
 

In [7], Xavier et al. presented performance evaluations 

between the containerization and the virtualization for HPC 

applications. The authors found that the containerization is 

the lightweight alternative to the virtualization for HPC 

applications. 

In [8], Park et al. presented a container-based cluster 

management platform to provide dynamic distributed 

computing environments desired by users. The authors 

compare the performance between the Docker-based 

execution and the native one by using two benchmark tools 

implemented with C, Java, Python, and R, and showed that 

Docker offers the near-native performance. 

In [9], Jaikar et al. focused on executions of scientific jobs 

that require intensive resources in cloud computing 

environments. They proved that the Docker container 

outperforms the OpenStack virtual machine to execute the 

CPU and memory intensive jobs. Besides, the Docker 

container consumes the less power while executing scientific 

jobs. 

 

III. IMPLEMENTATION OF UPC WEB SERVER 

In this section, we present the software platform and 

fundamental functions of the UPC Web server. 

A. Software Platform 

The UPC Web server is implemented using Node.js that is 

an open source server environment and can run on various 

platforms including Linux, Windows, UNIX, and Mac OS. 

Thus, the functions of job accepting, result reception and 

downloading are described by JavaScript. Node.js offers the 

interpreter and the running environment of JavaScript source 

codes on the server [11]. 

In the UPC system as revealed in Figure 2, Node.js runs on 

the Linux OS. Node.js has a built-in module called HTTP to 

create the HTTP-based server that listens to server ports and 

gives responses to the UPC master. The user interface is 

implemented using HTML5 and CSS files. The file system is 

also controlled by JavaScript codes. 

 
Fig. 2. User interface for UPC system. 

B. Threads for Basic Functions 

The three basic functions of the UPC Web server are 

implemented with different threads as follows.  
1) The job acceptance thread may accept the jobs that are 

submitted through the Web interface. A user can 

submit a job that consists of the source codes, the 

required platform and libraries lists. 

2) The job transmission thread transfers the submitted 

jobs to the UPC master using SSH File Transfer 

Protocol (SFTP) [12]. 

3) The result reception thread receives the results of the 

job from the UPC master and store them so that the user 

can download them from the Web interface. 
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C. Data Synchronization 

For both interactive and automated file transfers between 

the Web server and the UPC master, SSH File Transfer 

Protocol (SFTP) is used as the secure file transfer protocol 

supporting the full security, so that the file synchronization is 

secured and relied. SSH File System (SSHFS) [13] is used at 

the master to mount the directories and the files located in the 

Web server. 

 

IV. IMPLEMENTATION OF UPC MASTER 

In this section, we present the software platform and 

fundamental functions of the UPC master. 

A. Software Platform 

The source codes of the UPC master are implemented 

using Python for the server offering the multi-threaded 

programming [18].  
The MySQL server [19] is adopted for the database to 

manage the information of the PCs for the UPC worker. 

Multiple UPC workers can connect to the UPC master at the 

same time, where one thread is allocated to each worker. The 

Python multi-threaded module can provide the powerful, 

high-level supports for the threads. 

Besides, the Docker container technology [20] is used to 

provide the flexibility and portability for running various jobs 

on different worker PC platforms. Docker is an open source 

platform for developing, shipping, and running an application 

on an arbitrary PC environment. It builds the Docker image 

to offer the software environment for running each job, 

including the source codes, so that the job can run on a 

worker without considering the installed software. 

B. Threads for Basic Functions 

The four basic functions of the UPC master are 

implemented with different threads as follows.  
1) The job management thread receives the request for a 

new job from the Web server by detecting the newly 

updated files using SFTP. Then, it prepares a new job 

by unzipping, inserting and modifying the Docker file 

template, then builds and saves the complete job 

running environment to the job queue. 

2) The worker management thread receives the joining 

request from a UPC worker. When the master receives 

the request, it creates a new thread for the new worker, 

collects the information on the worker, and stores them 

at the master’ database.  
3) The job transmission thread sends a job in the job 

queue to the assigned worker, which is continued until 

the job queue is empty.  
4) The result uploading thread sends the result from the 

worker to the UPC Web server using SFTP. 

C. Docker Image Generation 

The UPC master accepts the jobs from the Web server and 

prepares the Docker file for each job to build the Docker 

image that bundle the environment and the application, and 

execute it as a Docker container, as shown in Figure 3. The 

Docker image can be generated from the Docker file that 

contains the list of the instructions. In our Docker image 

generation method, the Docker file is automatically created 

by analyzing the list of requirements for the job from the user 

and the extensions of source codes. To reduce the generation 

time and the size of the Docker image file, it checks the 

previously built Docker image for the worker PC, and only 

the necessary files are included in the image. Figure 4 shows 

the details of the process. 

 
Fig. 3. Docker image generation process overview. 

 
Fig. 4. Docker image generation process details. 

In details, the UPC master performs the following steps to 

generate the Docker Image for each submitted job. 

1) It unzips the job, examines the program type, and 

explores the requirement list. 

2) It compares and checks the information obtain at step 1. 

with the log data under the temporary information 

directory that stores the previously built Docker image 

information.  
3) It refers the previous built Docker image if the running 

environment, libraries, and dependencies are almost 

similar with the current job’s requirements.  
4) Otherwise, it refers the base image of the previously 

built Docker image when only the running environment 

is same.  
5) Otherwise, it generates a new Docker image for the 

current job by following the instructions of the 

generated Docker file.  
6) It accesses to Public Remote Repository to download 

and install the necessary images, libraries, and 

platforms, and chooses the small and light package to 

reduce the image size to a minimum.  
7) It saves them as a Docker image when successfully 

finished, and adds it in the correspondence job list. 
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D. Worker Management 

When a PC joins the UPC system as a worker, the UPC 

master collects the static performance information of the PC, 

such as the memory size, the CPU frequency, the number of 

cores, and the hard disk size. The master also periodically 

collects the dynamic performance information of the PC, 

such as the percentage of the current resource usage and the 

available resource status. The UPC master records all the 

information in the database. Thus, if the worker cannot keep 

running the job because the resource usage exceeds the upper 

limit, the UPC master can detect it. In this case, the UPC 

master can send stop alert of running UPC job to the worker 

and resume alert when resources are available to use. 

 

V.   IMPLEMENTATION OF UPC WORKER 

In this section, we present the software platform and 

fundamental functions of the UPC worker. 

A. Software Platform 

The source codes of the UPC worker are also implemented 

using Python for the clients offering the multi-threaded 

programming. The Docker container technology is used to 

run the Docker image for each job on the worker assigned by 

the UPC master. 

B. Threads for Basic Functions 

The five basic functions of the UPC worker are 

implemented with different threads as follows.  
1) The connection initiation thread finds the address and 

the port of the UPC master from the socket. Then, the 

worker is connected to the UPC master by sending the 

necessary information. 

2) The job reception thread receives the Docker image 

for the job with the .tar file and temporarily allocates it 

in the disk space of the worker.  
3) The job execution thread starts to load and run the 

received Docker image as a container. 

4) The job restoring thread saves the current running 

states of the job in the hard disk and sends the state to 

the master when the worker PC runs out all the 

available resources.  
5) The result transmission thread transfers the result of 

the job when successfully completing it. Then, it 

automatically removes the Docker image and the 

container from the disk space of the worker. 

C. Resource Usage Measurement 

The resource usage of the UPC worker is measured using 

psutil (process and system utilities), a Python cross-platform 

library. psutil can monitor, profile, and limit the process 

resources, and manage the running processes [10]. 

Figs. 5 and 6 show the CPU and memory usage rates of one 

student’s PC in our group for one weekday. psutil recorded 

the resource usage rates at every one minute. Both usage rates 

significantly increased at the daytime from 8:30am to 6:30pm. 

It is found that the CPU usage rate is not high for the whole 

day where it stays between 2% and 5%. Thus, the CPU has 

sufficient capability of running the job in the UPC system. 
 

On the other hand, the memory usage rate is relatively high 

for the whole day where it stays between 56% and 62%. 

Therefore, it is necessary to consider the proper memory use 

for running the job in the UPC system. 

 

 
Fig. 5. CPU usage rate of student’s PC. 

 
Fig. 6. Memory usage rate of student’s PC. 

D. Job Control Function 

In the UPC system, the running job on a worker must not 

disturb the use of the PC by the owner. As shown in the 

previous subsection, the memory usage rate is generally high.  
Therefore, the job control function is implemented to stop 

the running job and free the memory for the job, when the 

memory usage rate becomes higher than the given threshold. 

In this study, 90% is selected for the threshold from our 

experiment results that will be shown in Section VI. Then, we 

discuss the implementation of worker PC memory control on 

Linux or Windows operating system. 

First, we discuss the implementation for Linux. kill 

command is used to stop the job. Then, ’kill -STOP 

#Process-Name’ command is used to free the memory. If the 

job can run there again, ’kill -CONT #ProcessName’ 

command is used to resume the job. 

Next, we discuss the implementation for Windows. 

taskkill command is used to stop the job. 

Then, ’Stop-Process -Name #ProcessName’ command is 

used to free the memory. If the job can run there 

again, ’Cont-Process -Name #ProcessName’ command is 

used to resume the job. 
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VI. EXPERIMENTS 

In this section, we conduct experiments of the improved 

UPC system. 

A. Experiment Setup 

In our experiments, we adopt one Master PC and four 

worker-PCs in Table I. These worker PCs can be regarded 

into two groups as PC-1, 2 and PC-3, 4 depending upon the 

number of cores. Then, we adopt two C++, three C and four 

Python programs for jobs in Table III. The PCs are connected 

with the master through the 100Mbps wired Ethernet, and 

have the SSD disks. 

The two C++ programs (Palabos [14], Flow [15]) were 

physic simulation programs that consumed memory usage a 

lot. The two C programs (Network Simulator, Optimization 

Algorithm) were developed in our group for wireless network 

studies [16]. The three Python programs (DCGAN, RNN, 

and CNN) were picked up from the GitHub repository for 

neural networks [17]. They require high computing resources. 

The remaining one C program (FFmpeg) [21] and one Python 

program (Converter) [22] are related with processing of 

multimedia content. Nowadays, multimedia content 

processing is becoming popular and working with large 

content takes more processing time. 

TABLE I: PC SPECIFICATIONS IN EXPERIMENTS 

 

B. Worker Usability by CPU Rate 

First, we conduct the experiment of verifying the usability 

of the worker, when CPU usage rate of the PC is very high 

while running a UPC job. Here, we run the Python program 

for Convolutional Neural Network (CNN) five times on PC-3, 

and check the operability of the PC.  

Fig. 7 shows the change of the CPU usage rate and the CPU 

time of the job execution. At the first run, the job occupies 

332% of the total CPU resource, which indicates that three 

cores are fully occupied. At the second-fifth runs, when the 

PC owner has daily computational processes of Word, 

PowerPoint, Web access, the operating system automatically 

controls them at the higher priority than the jobs for the UPC 

system, and reduces the assigned CPU resource to the job at 

296%, 224%, 181%, and 315%, respectively. Thus, no 

disturbance occurs in handling the owner processes. 

C. Worker Usability by Memory Rate 

Next, we conduct the experiment of verifying the usability 

of the worker PC, when the memory usage rate of the PC is 

very high. Figure 8 shows the change of the memory usage 

rate and the CPU time of the job program. The PC does not 

work properly at the fourth run. When it exceeds 90%, the PC 

is hung up and needs to be rebooted, where all the running 

processes are lost. Therefore, the memory usage rate for the 

UPC job must be carefully controlled to avoid the problem. 

 

 
Fig. 7. CPU usage rate by CNN program. 

 

 
Fig. 8. Memory usage rate without control. 

D. Job Control Result 

Then, we apply the implemented job control function. Fig. 

9 shows the change of the memory usage rate when the same 

CNN program runs on the PC five times. Every time the rate 

exceeds the given threshold (90%), the job is automatically 

stopped and about 36% of the memory is released to keep 

running daily processes by the PC owner. 

 

 
Fig. 9. Memory usage rate with control. 

E. Docker Image Generation 

Besides, to verify the effectiveness of the proposed Docker 

image generation method, we measure the CPU time to 

generate the Docker image and the file size for the same jobs 

 PC PC-1 PC-2 PC-3 PC-4 Master  

processor type core-i3 core-i5 core-i7 core-i9 core-i5  

number of cores 4 4 8 16 4  

clock frequency (GHz) 1.70 2.60 3.40 3.60 3.20  

memory available 2 2 4 8 8  

(GB) total 4 4 8 16 8  

disk available 64 64 64 64 225  

(GB) total 500 500 500 500 225  
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on two different PCs, and evaluate the reductions of the total 

CPU time and the size of the Docker images by our proposal. 

Usually, the Docker image is generated at the UPC master in 

the UPC system. Table II compares the CPU time and the file 

size on the master and PC-1 that is the slowest PC, before and 

after applying the proposal. As the effectiveness, the total 

image generation time is reduced to 7min. 24sec. at the 

master and 17min. 04sec. at PC-1 and the total image size for 

the nine jobs is reduced to around 3.126 GB. 

 

TABLE II: EVALUATION OF DOCKER IMAGE GENERATION 

jobs 
Image generation time (H:M:S) Image size (GB) 

master PC-1 master 
before after before after before after 

Simulator 0:01:03 0:00:19 0:02:36 0:00:38 0.395 0.217 
Algorithm 0:00:42 0:00:12 0:01:10 0:00:12 1.5 0.892 
DCGAN 0:01:35 0:01:09 0:03:33 0:02:28 1.9 1.83 

RNN 0:01:27 0:00:28 0:03:18 0:00:42 1.8 1.78 
CNN 0:02:24 0:01:36 0:05:16 0:04:25 3.3 3.26 

FFmpeg 0:02:37 0:02:10 0:06:37 0:06:13 4.4 3.16 
Convert 0:03:49 0:01:47 0:11:07 0:04:34 3.5 2.89 
Palabos 0:06:19 0:05:04 0:12:07 0:09:48 6.7 6.34 

Flow 0:01:31 0:01:18 0:03:36 0:03:16 0.441 0.441 

total 0:21:27 0:14:03 0:49:20 0:32:16 23.93 20.81 

Reduced 0:07:24 0:17:04 3.126 

 

F. Measurements of Resource Usage by Jobs 

Now, we measure the resource usage of the four PCs by the 

nine jobs. Table III shows the CPU time, the memory usage 

rate, and the required disk space of each job. 

 

TABLE III: FEATURES OF NINE JOB PROGRAMS 

Jobs CPU time (H:M:S) Memory usage rate (%) Disk space (GB) 

PC-1 PC-2 PC-3 PC-4 PC-1 PC-2 PC-3 PC-4 PC-1 PC-2 PC-3 PC-4 

Simulator 02:16:12 01:08:10 00:55:47 00:41:06 0.68 0.67 0.17 0.08 0.393 0.393 0.393 0.393 

Algorithm 00:44:04 00:28:59 00:22:48 00:16:14 0.69 0.67 0.18 0.07 1.37 1.37 1.37 1.37 

DCGAN 01:41:29 01:13:43 00:26:59 00:17:00 38.69 37.76 12.18 4.2 1.87 1.87 1.87 1.87 

RNN 00:21:19 00:15:37 00:10:39 00:09:13 30.36 29.77 7.86 2.08 1.84 1.84 1.84 1.84 

CNN 00:32:23 00:28:41 00:13:26 00:11:43 35.03 36.87 11.74 4.53 4.04 4.04 4.04 4.04 

FFmpeg 00:52:57 00:38:09 00:19:43 00:14:19 21.69 18.04 5.12 1.04 4.43 4.43 4.43 4.43 

Converter 00:24:25 00:18:50 00:12:57 00:12:09 18.89 18.03 5.23 2.19 3.46 3.46 3.46 3.46 

Palabos 00:27:28 00:23:15 00:20:01 00:19:06 42.96 47.98 14.63 4.46 6.68 6.68 6.68 6.68 

Flow 00:27:09 00:16:34 00:12:57 00:10:21 47.97 48.05 15.14 5.08 0.43 0.43 0.43 0.43 

total 07:47:26 05:11:58 03:15:17 02:31:11   

 

TABLE IV: CPU TIME AND TRANSMISSION DATA SIZE FOR NINE JOB PROGRAMS 

Jobs 
CPU time on master (H:M:S) CPU time on worker (H:M:S)  

Total CPU 

time 

Transmission data 
size 

 
Assigned 
worker Build Save Transfer Load Run Transmit Docker 

(GB) 
Result 
(KB) 

Simulator 00:00:19 00:00:56 00:00:11 00:00:07 00:53:25 00:00:40 00:55:38 0.217 17 PC-3 

Algorithm 00:00:12 00:01:04 00:01:05 00:01:51 00:23:16 00:00:40 00:28:08 0.892 8 PC-2 

DCGAN 00:01:09 00:01:29 00:01:37 00:00:34 00:11:09 00:00:55 00:16:53 1.83 20 PC-4 

RNN 00:00:28 00:01:32 00:01:36 00:00:22 00:04:36 00:00:40 00:09:14 1.78 8 PC-4 

CNN 00:01:36 00:02:09 00:02:34 00:00:59 00:03:42 00:00:40 00:11:40 3.26 4 PC-4 

FFmpeg 00:02:10 00:01:54 00:02:16 00:01:23 00:04:58 00:01:50 00:14:31 3.16 1.7e+6 PC-4 

Converter 00:01:47 00:03:50 00:01:39 00:04:51 00:07:54 00:00:30 00:20:31 2.89 179300 PC-2 

Palabos 00:05:04 00:01:22 00:00:11 00:02:52 00:20:20 00:01:25 00:31:14 6.34 250 PC-1 

Flow 00:01:18 00:00:21 00:00:20 00:00:49 00:24:43 00:00:00 00:27:31 0.438 0 PC-1 

total  03:35:20    

 

The first two jobs are C programs that do not use 

multi-thread. Thus, the CPU time is not much different 

between the worker PCs except PC-1 that has lack of 

maximum turbo frequency feature. They do not consume 

much memory. The next three neural networks jobs are 

Python programs that use multi-thread. Thus, the CPU time is 

much different between the worker PC-1,2 and PC-3,4. They 

consume much memory. 

Among two multimedia processing jobs, C program 

(FFmpeg) use multi-thread and so, the CPU time is much 

different, however, Python program (Converter) do not use 

multi-thread and the CPU time is not much different between 

the worker PC-1,2 and PC3,4. The last two physic simulation 

jobs are C++ programs that use only two and four threads 

during execution. Therefore, the CPU time is not much 

different be-tween PC-1,2 and PC-3,4. However, these 

simulation programs consume much memory. 

G. Measurements of CPU Time and Disk for UPC System 

Then, we measure the CPU time and the disk space 

required to execute each job in the UPC system. After a job is 

submitted to the UPC master through the Web server, the job 

is processed in the following six steps:1) building the Docker 

image file at the master (Build), 2) saving the image file in 

the disk at the master (Save), 3) sending the image file from 

the master to one worker (Transfer), 4) receiving the image 

file and loading it into the memory at the worker (Load), 5) 

running the job program at the worker (Run), and 6) sending 

back the result from the worker to the master (Transmit). 

Thus, the CPU time for each of the six steps is measured. 
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Table IV shows the CPU time required for each step of the 

nine jobs on the master and on one worker, and the data size 

for transmissions between the master and the worker. Here, 

we assign a job to a worker in descending order of the CPU 

time for the jobs in Table III. The image building time is 

reduced by referencing the similar previously built image 

around one minute. However, it can be saved a lot time for 

the regions where the Internet communication speed is poor 

to download the necessary packages from the remote official 

repositories and for low performance PC to install all the 

downloaded packages. The running time on a worker 

dominates the required time for each job. Thus, the proper 

worker assignment for each job is critical in improving the 

performance of the UPC system. It will be in our future 

works. 

 

VII. CONCLUSION 

This paper presented the implementation of the UPC 

system using the Docker container to run various jobs on 

various worker PCs. The CPU time was measured when nine 

jobs with various features were computed on four PCs with 

different CPU architecture. The effectiveness of the Docker 

image generation method was verified by comparing the total 

CPU time and the file size before and after applying the 

proposed method on two PCs for each job. In future works, 

we will implement the job migration function of dynamically 

changing the assigned worker of the currently running job to 

another one, when the performance of the current worker is 

low and that of the new worker is high, and study the job 

scheduling method to efficiently assign the jobs to the 

workers including the job migration. 
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